Great Smoky Mountains

National Park 1934

International Biosphere Reserve; UNESCO World Heritage Site

I. Human History

- A. Sacred home of Cherokee Indians one of the most culturally advanced on the continent
 - 1. 1838 forcibly removed to Oklahoma Trail of Tears
- B. European settlement
 - 1. Late 1700s 1900s
 - a. lived off wildlife and land, used timber for buildings and fences
 - b. areas that had once been forest became fields and pastures
 - 2. arrival of lumbering in early 1900s changed agricultural pattern of life
 - a. self-sufficient economy replaced by dependence on manufactured items
 - b. logging boom towns sprang up overnight (cut primeval forests)
- C. Great Smoky Mountain National Park 1934
 - 1. saved the 20% of primeval forest that remained within park boundaries
 - 2. ~1,200 land-owners had to leave their land once the park was established
 - a. left behind farm buildings, mills, schools, and churches
 - 1.) >70 of these structures have since been preserved
 - a.) largest collection of historic log buildings in the East
 - money to buy land raised by individuals, private groups, and school children; Laura Spellman Rockefeller Memorial Fund donated \$5 million

II. Geologic History

- A. Precambrian 1.1 BYA
 - Basement rocks Grenville Orogeny (super continent Rodinia)) igneous & metamorphics
- B. Precambrian 800 545 MYA
 - 1. Deposition on continental shelf (south of equator) of Iapetus Ocean
 - a. along ancient margin of North American continent as supercontinent broke apart
 - b. 50,000 ' of clay, silt, sand, gravel, and minor amounts of calcium carbonate
 - 1.) reflect changes in environments of deposition over time
 - a.) varying depths of water, ocean currents, types of sediments
 - 2.) cemented/lithified into 9 mi of rock; deformed & metamorphosed
 - C. Ocoee Supergroup metasedimentary rocks (sandstone, siltstone, conglomerate), slightly metamorphosed slate and schists
 - 1.) subdivided into smaller divisions of differing rock types reflecting range of climatic and topographic conditions

- C. Paleozoic 545 360 MYA
 - 1. sedimentary compacted/cemented sand, silt, & clay deposited in ancient shallow marine continental margin in what is now Appalachian region
 - a. Chilhowee Group quartz sandstone
 - b. Knox Group carbonates
 - 2. two minor orogenies from microcontinents
 - a. **Taconic Orogeny** in Southern Appalachians brought Ocoee Supergroup to North American margin – Greenbriar Fault
 - b. Acadian Orogeny to east but caused compression and renewed thrust faulting and some granitic intrusions
- D. Paleozoic 310 245 MYA
 - eastern edge of North American plate collides with African plate becoming part of a "supercontinent" known as Pangaea
 - 2. Allegheny Orogeny uplifted Appalachian mountains Newfoundland to Alabama
 - 3. African plate gradually pushed against edge of the North American plate
 - a. original horizontal layers were bent or folded and broken by faults
 - **b. Great Smoky & Gatlinburg trust faults:** older, deeply buried rocks were pushed northwestward, up and over younger rocks
 - 4. Pangaea broke apart & North American and African plates moved to present position
 - 5. intense erosion from ice, wind, and water
 - a. mountain valleys were carved
 - b. sediment transported to Atlantic & Gulf of Mexico by rivers & streams
 - c. rock most resistant to erosion formed highest peaks
 - 1.) metasandstone on top of Clingmans Dome and Mt Le Conte
 - 2.) igneous rocks, dikes, quartz veins and pegmatite at Clingman's Dome
 - 3.) waterfalls formed where downcutting streams encountered ledges of resistant metasandstone, erodes more slowly than adjacent slate or metasiltstone
 - unmetamorphosed limestone and dolomite (Knox Group) found on floor of Cades Cove, below the Great Smoky fault
- E. Cenozoic
 - 1. Colder & wetter climate of Pleistocene ice age glaciers did not reach this far south
 - a. lowered timberline: remnants of spruce-fir forests are in higher peaks and ridges
 - b. intense frost wedging and increased erosion & downcutting
 - c. geologists estimate that the mountains are being eroded ${\sim}2^{\prime\prime}/ky$
 - d. great diversity in plant and animal life