

Transgression and Regressions

Sea regressing

Bryce Canyon National Park

- I. Introduction
 - A. John Wesley Powell 1870's
 - B. Paiute Indians many of their names retained: Paunsaugunt "home of the beaver
 - C. Mormons, Ebenezer and Mary Bryce, settled here but left because of lack of water 1. "It's a hell of a place to lose a cow!"
 - D. National Forest in 1905
 - E. National Monument in 1923 Temple of the Gods N.M.
 - F. Utah National Park 1924
 - G. Bryce Canyon NP in 1928
- II. Geographic setting
 - A. rim elevation is 8,000' 9,100'
 - B. not really a canyon: horseshoe shaped basin 12 miles wide and 3 miles long, 800' deep
- III. Geologic Processes
 - A. Joint control
 - 1. primary direction of fracture direction of fins
 - 2. secondary cross-cutting fractures forms pinnacles
 - B. physical weathering \sim 200 freeze-thaw cycles/year with differential erosion
 - C. chemical weathering
 - 1. decomposition by solution
 - 2. oxidation and staining
 - a. white is absence of iron minerals
 - b. pink or purple manganese dioxide
 - c. red and yellow iron minerals (run over white stucco coating
 - D. Topography
 - 1. 3 plateaus
 - a. Paunsaugunt Sevier Fault: Pink Cliffs
 - b. Markagunt west
 - c. Aquarius 2000' higher no tree line
- IV. Cenozoic 40 60 mya Claron Formation
 - A. streams, lakes, shallow seas
 - 1. limy ooze precipitated to form limestone pink limestone forms much of scenery
 - 2. shallow seas & mud formed shales
 - 3. shoreline formed sandstone cemented by iron oxide
 - 4. gravels formed rock cap
 - B. Laramide Orogeny deformation gentler in Colorado Plateau not mt. building
 - 1. Faulting Sevier, Paunsaugunt
 - a. Uplifted 4,000' 6,000' and tilted to west \sim 1,700'
 - b. Tensional pulled apart as well as uplifted
 - c. Movement still going on
 - C. Erosion
 - 1. Water runoff dominates at Sunset Point pinnacles
 - 2. Frost wedging dominates at Rainbow Point 1000' higher and forms cliffs
 - 3. Forms hoodoos (variable thickness) and pinnacles or spires (uniform thickness) a. 6' to 100' high

Mesa Verde National Park

- I. Introduction
 - A. Dwellings of Anasazi- "Ancient Ones" now called Ancestral Pueblo people
 - 1. occupied for 700 years, 600 AD 1300 AD drought or overuse of surface depleting the soil may have driven them out
 - 2. 600 dwellings and 4,000 archaeological sites
 - 3. descendants are Hopi, Zuni, and other Pueblo people (total of 24 associated tribes)
 - B. William Jackson, photographer for Hayden expedition, was first person to photographed cliff dwellings and make a report
 - C. Virginia McClurg New York journalist campaigned to get the area preserved
 - D. Wetherill and Mason happened upon Cliff Palace and Spruce House while looking for cattle
 - E. 1906 National Park to preserve works of man, the first national park to do so
 - F. 1978 World Heritage Cultural Site
 - G. First to have museum, interpretive services, and campfire programs
- II. Geologic History
 - A. Upper Cretaceous 100 75 MYA
 - 1. Mancos Shale deep water; fine particles, organic material, and fossils: oysters, clams, snails, shark teeth, ammonites
 - 2. Mesaverde Group
 - a. Point Lookout Sandstone shoreline of sea: marine, crossbedded
 - b. Menefee Formation backshore and lagoon: shale, siltstone, sandstone
 - c. Cliff House Sandstone shifting shoreline, 400' thick, canyon cliffs i. Shale zones in Cliff House determine location of alcoves in which
 - i. Shale zones in Cliff House determine location of alcoves in which dwellings were constructed
 - a.) Springs and seeps: sandstone is permeable and shale is not = differential erosion
 - d. 1500' of shale & sandstone eroded away
 - B. Laramide Orogeny Colorado Plateau–65 MYA
 - 1. gentle slope (7^{0}) to the south forming a cuesta necessary for formation of alcoves
 - 2. streams downcut parallel canyons rapidly
 - a. exposed Menefee and Cliff House in canyons
- III. Main Dwellings
 - A. Cliff Palace largest; 150 rooms, 23 kivas, 100 120 people
 - 1. thought to have special significance as social/ administrative site with high ceremonial usage
 - B. Spruce Tree House third largest & best preserved; 130 rooms & 8 kivas; 60 80 people
 - C. Balcony House 40 rooms; enter by 32' ladder

Zion National Park

Mukuntweap National Monument 1909 National Park in 1919 Portions added in 1937 and 1956

- I. Introduction
 - A. earliest inhabitants were Anasazi Indians
 - B. 1847 Mormons settled gave it its name which means "resting place"
 - 1. raised cotton and sheep but not very successful
 - C. 1860's John Wesley Powell first scientific expedition
- II. Geologic history part of Grand Staircase
 - A. Triassic
 - 1. Environment changes from shallow sea to coastline to rivers and lakes
 - 2. Moenave Sandstone 300' grey-white sandstone with some fossil fish; lower cliffs at base of canyon
 - 3. Kayenta Fm 200' limestone, sandstone, siltstone, shale with minor amounts of limestone and conglomerate
 - a. Flood plain and stream deposits
 - b. Canyon opens up when come to this layer
 - B. Jurassic climate change to desert
 - 1. Navajo Sandstone 2200' 98% quartz with CaCO3 and Fe2O3 cements
 - 2. Shallow warm seas transgress from west
 - 3. Temple Cap Sandstone beach deposit
 - 4. Carmel Limestone 300': shallow warm seas; youngest rock in park
 - C. Tertiary 13 mya
 - 1. Block faulting NNE SSW normal faults
 - a. Raised Markagunt Plateau and Zion 9000'
 - b. Bounded by Hurricane and Sevier Faults
 - 2. 1.3 mya Virgin River began its downcutting
 - a. descends from 10,000' at Pink Cliffs to 4,000' in Zion Canyon
 - b. precipitation and snows of Pleistocene provided water for downcutting
 - c. gradient 40' 8-'/mile
- III. Geologic features
 - A. Hanging valleys 1,100' 1,300'
 - 1. Lack of adjustment of tributaries
 - B. Rectangular patterns of streams
 - 1. Vertical joints at right angles
 - C. Arches
 - 1. Springs and seepage
 - 2. Differential weathering
 - a. Cement holding sand dissolves in areas of greatest moisture and sand grains fall away
 - b. If joint parallels cliff face, slab will eventually separate from main cliff
 - 3. Tunnels bored into Navajo SS showed joints only within 30' of surface
 - a. become further apart with distance from cliff face
 - b. joints rarely extend laterally without interruption
 - i. stop or split into multiple joints
 - c. may have been caused by gradual release of pressure during canyon cutting i. reason it is not further into canyon walls
 - D. Cold travertine at springs solution of calcite cement
 - E. Checkerboard Mesa crossbedding and vertical fractures
 - F. Staining
 - 1. MnO_2 black or purple
 - 2. Na₂HCO₃ and CaCO₃ white

Grand Canyon National Park

National Monument in 1908 National Park in 1919 portions added in 1932, 1969, 1975 World Heritage site – 1979

- I. Introduction
 - A. Geologic Setting
 - 1. Colorado Plateau
 - 2. Numerous faults cutting across the Canyon
 - 3. Canyon itself
 - B. Geographic
 - 1. averages 1 mile deep, 4-8 miles wide (avalanches and landslides widen the canyon, 280 miles long, deepens 2200' from NE SW
 - 2. great range in elevations and climate
 - 3. variations between N & S rims
- II. Geologic History
 - A. Precambrian to 2 bya
 - 1. Sediments metamorphosed to form **Vishnu Schist** during mountain building Mazatzal Mountains
 - 2. Igneous intrusions formed **Zoroaster Granite**
 - 3. Formation of minerals: garnets, tourmaline, etc.
 - B. 1.7 bya
 - 1. erosion of mountains formed an unconformity
 - C. 1.25 bya
 - 1. seas transgressed
 - 2. lava flows
 - 3. limestone, conglomerate, shale, and sandstone were deposited to form the Unkar Group or **Grand Canyon Series**
 - D. 0.5 bya
 - 1. block faulting and tilting formed Grand Canyon Mountains
 - E. 0.25 bya
 - 1. erosion in some cases all the way down to the Vishnu
 - a. Great Unconformity
 - F. Paleozoic
 - 1. Cambrian transgression of seas
 - a. rivers flowing from the west into sea
 - b. Beach and coastal sand dunes: Tapeats Sandstone
 - c. as seas transgress further, the shoreline shifts eastward and Canyon area is shallow sea **Bright Angel Shale**
 - d. transgression deeper seas Muav Limestone
 - 2. Devonian regression of seas shallow intertidal marine sea
 - a. **Temple Butte Limestone** scattered remnants that fill eroded channels and depressions
 - 3. Mississippian transgression of seas wide, warm, shallow, clear
 - a. Redwall Limestone
 - b. Surprise Canyon Formation
 - 4. Pennsylvanian regression of seas forms flood plain
 - a. Supai Formation: sandstone and siltstone
 - 5. Permian swamps and lagoons into deserts
 - a. Hermit Shale
 - b. Coconino Sandstone

- c. Transgression of seas: Coconino sands smoothed by advancing seas
- d. Toroweap Formation
 - i. Formed during 3 transgressions interspersed with 2 regressions marine, tidal flat, dunes
- e. Advancing seas formed Kaibab Limestone
 - i. Youngest rock unit found in Grand Canyon NP
- III. Colorado River
 - A. Evolving system 5 mya
 - B. Evidence for both conflicting theories: flowed from the north to SE or to the SW and or from south to NW
 - C. Uplift, downcutting, rejuvenation
 - Uplift of Colorado Plateau provided driving force for canyon carving

 Last major uplift occurred 250,000 ya
 - 2. Temples are erosional remnants from tributaries
 - 3. Hanging valleys
 - a. Deer Creek
 - b. Elves Chasm
 - 4. Entrenched meanders
- IV. Volcanic activity 1.2 mya western part of canyon
 - A. Powell was first to report lava cascades
 - B. Long periods of time and multiple episodes
 - C. In Toroweap area > 100 cones on N rim and <12 on S rim
 - D. Lava flows concentrated along fault areas
 - E. Toroweap and Vulcan's Throne area sequence
 - F. filled tributary valleys some with 47 different flows up to level of rim
 - G. lava dams formed each time
 - 1. river gravels at high elevations
 - 2. lake silts and lake beds
 - 3. Colorado River now ~ $\frac{1}{2}$ mile south of where it was originally

Prior to the Glen Canyon Dam in 1963, the Colorado River could carry 500,000 tons of sediment/day. During times of flooding, it was closer to 27 million tons.